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Existence of long-range order in the steady state
of a two-dimensional, two-temperature XY model
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Monte Carlo simulations are used to show that the steady state of the d =2, two-temperature, diffusive XY
model displays a continuous phase transition from a homogeneous disordered phase to a phase with long-range
order. The long-range order exists although both the dynamics and the interactions are local, thus indicating the
failure of a naive extension of the Mermin-Wagner theorem to nonequilibrium steady states. It is argued that
the ordering is due to effective dipole interactions generated by the nonequilibrium dynamics.

PACS number(s): 05.50.+q, 05.70.Ln, 64.60.Cn

Fluctuations increase as the spatial dimension of a system
is decreased and low-dimensional, equilibrium systems with
finite-range interactions cannot maintain long-range order.
This observation is known as the Landau-Peierls (LP) argu-
ment [1] or, for systems with continuous symmetry, as the
Mermin-Wagner (MW) theorem [2]. Since phase transitions
and emerging long-range order in nonequilibrium steady
states have attracted a lot of interest recently [3,4], it is natu-
ral to ask if similar arguments are valid for nonequilibrium
systems. .

Clearly, the LP argument or the MW theorem must be
generalized if we want to apply them to a nonequilibrium
steady state. The reason is that, while interactions and tem-
perature define an equilibrium state, a nonequilibrium steady
state is the result of the interplay of interactions and dynam-
ics. Thus, apart from restricting the range of interactions, we
must also qualify the dynamics in a nonequilibrium process.
To understand this point, consider a kinetic Ising model in
which two dynamical processes compete with each other [5].
The elementary processes are (i) spin flips generated by
nearest-neighbor interactions coupled to a heat bath at tem-
perature 7 and (ii) random spin exchanges generated by a
T=o heat bath. In this model, the interactions are short
ranged but the dynamics is long ranged because spins are
exchanged at arbitrarily large distances. As a result of the
long-range dynamics, effective long-range interactions are
generated and long-range order appears in this flip-and-
exchange kinetic Ising model [6] even in d= 1. This result is
in contradiction with the LP argument which states that long-
range order is impossible for a d=1 equilibrium Ising sys-
tem with short-range interactions. Thus a simple extension of
the LP argument and of the MW theorem to nonequilibrium
systems without restricting the dynamics clearly does not
work.

One might conjecture that by restricting both the interac-
tions and the elementary dynamical processes to be local, the
generation of effective long-range interactions would be pre-
vented and an extension of the LP or MW arguments to

*Current and permanent address: Institute for Theoretical Physics,
Eotvos University, 1088 Budapest, Puskin u. 5-7, Hungary.

1063-651X/95/52(1)/9(4)/$06.00 52

nonequilibrium systems could be made. This conjecture,
however, is not necessarily true since local interactions com-
bined with anisotropic local dynamics have been shown to
lead to effective long-range (dipole) interactions in a two-
temperature kinetic Ising model [7]. Furthermore, a spherical
approximation to the above model has shown [8] that effec-
tive long-range interactions are generated not only in the
Ising case but also in the case of infinite-component order-
parameter field. Thus one may expect that neither the LP
argument nor the MW theorem can be extended to nonequi-
librium steady states even if both the interactions and the
dynamics are local. Of course, this expectation should be
checked carefully since the details of the dynamics do play
an important role in determining the ordering properties of
nonequilibrium steady states, and the details, such as the
presence or absence of topological defects, the type of de-
fects determining the long-time relaxation of order, are in-
deed very different in the Ising model, in the spherical limit
and in the case of an n-component order-parameter field with
1<n=d.

Our aim here is to confirm the failure of the naive exten-
sion of the MW argument by studying the existence of long-
range order in the d=2, two-temperature, diffusive kinetic
XY model. According to the MW theorem, long-range order
cannot exist in the d=2 equilibrium XY model with short-
range interactions. However, we will present the results of
Monte Carlo simulations which show that a continuous tran-
sition from the homogeneous disordered state to a state
with long-range order exists in the nonequilibrium two-
temperature model. We will also construct a field-theoretic
description of the transition that is consistent with the Monte
Carlo results. The theory indicates that, just as in the two-
temperature Ising case [7], the critical properties are in the
universality class of an equilibrium system with long-range
interactions, supporting our conjecture that the generation of
effective long-range interactions is the mechanism respon-
sible for the breakdown of the MW theorem.

The model we study consists of XY spins m; (i.e., of
two-dimensional vectors of unit magnitude) at sites i of a
square lattice with periodic boundary conditions imposed.
There are ferromagnetic interactions of strength J between
nearest-neighbor spins, so the energy of a configuration is
H=—JZ;;ym;-m;, where (ij) indicates nearest-neighbor
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pairs. The system evolves by Kawasaki exchanges [9] of
nearest-neighbor spins, occurring with Metropolis rates [10].
Exchanges along one axis of the lattice, which we call the
“parallel” direction, satisfy detailed balance at an inverse
temperature By=J/T, while exchanges in the other direc-
tion, which we call the “perpendicular” direction, satisfy
detailed balance at an inverse temperature 8, =J/T, . When
the temperatures of the two heat baths are equal, the dynam-
ics satisfies detailed balance with the nearest-neighbor XY
Hamiltonian, and the model reduces to the equilibrium ki-
netic XY model with Kawasaki dynamics. However, when
the two temperatures are not equal, an energy current flows
from the high-T heat bath to the low-T heat bath, and de-
tailed balance is not satisfied. The critical behavior of the
system when the two temperatures are not equal is very in-
teresting in the Ising version of the above model [7]. Its
universality class coincides with that of another equilibrium
model: The Ising ferromagnet with dipolar interactions [7].
As we shall see below, an analogous situation develops in
case of the XY model.

For simplicity, in our simulations, we considered only the
case B =0, i.e., exchanges in the parallel direction were ran-
dom. Furthermore, the distribution of the angles of the spins
(which is conserved by the dynamics) was chosen to be uni-
form: for a system with N=L, L lattice sites the angles of
the N spins {m;} were 27j/N with j=1,2,...,N. A diffi-
culty in studying the phase transition in this system is that
the spatial anisotropy requires an analysis using anisotropic
finite-size scaling [11]. That is, one must compare systems
whose shapes scale such that L /Lﬁ+A is constant, where
A is an anisotropy exponent. As was done for the two-
temperature Ising system [12], and based on renormalization
group results (discussed below) which indicate that A~1 in
the present model, we choose to simulate systems with sizes
L, XLj=12X9, 16X 16, 24X 36, and 32X 64, which are re-
lated by the naive scaling 4L X L2,

The simulations revealed a homogeneous disordered state
at small B, , and an ordered state with long-range order at
large B, . A typical ordered configuration is shown in Fig. 1.
Because the spin distribution is conserved by the dynamics,
the ordering occurs as a phase separation resulting in a
steady-state configuration with a spin wave in the perpen-
dicular direction. To study the transition with the type of
ordering shown in Fig. 1, we defined the order parameter
¥ as the following average of long-wavelength limits of
structure factors:

1
V= §[C1(27T/L_L ,0)+Cy(27/L, ,0)],

where C,(q, ,q)) is the normalized Fourier transform of the
ath component of the magnetization density. In the simula-
tions, we measured the time evolution of ¥ and, after pro-
ducing a rough estimate of their relaxation times, determined
the time averages (¥) and (¥?) in the steady state. The runs
typically ranged in length from 4 X 10° Monte Carlo sweeps
(MCS) for the 12X9 systems to 4X10° MCS for the
32X 64 systems.

Figures 2 and 3 display the results of our simulations. The
data for ¥ (Fig. 2) clearly show a continuous transition to a
phase-separated ordered state at B, .~0.68. (Note that the
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FIG. 1. A typical ordered configuration with long-range order.
The L and || directions correspond to the directions of the 1 and
| bonds, respectively. The configuration shows a spin wave in the
perpendicular direction.

equilibrium Kosterlitz-Thouless transition [13] occurs at a
lower temperature B.= 8/9 [14].) The presence of a continu-
ous transition is further supported by the cumulants for vari-
ous finite-size systems (Fig. 3), g, =3(1—¥¥2)/(¥)). In
the limit of large sizes, they cross at the critical point 3, ., as
usual for continuous transitions [15].

Since Figs. 2 and 3 show convincingly that the system
does order, we now turn to the question of how the two-
temperature XY model can have an ordered state with long-
range order. To address this issue we construct a field-
theoretic description of the model that indicates that the MW
theorem fails because of the presence of effective long-range
interactions generated by the two-temperature, diffusive dy-
namics. Although not rigorous, similar arguments have pre-

1.0 T

0.8 |

0.6
¥ t

0.4

FIG. 2. Monte Carlo results for the order parameter (¥'), show-
ing a transition to long-range order at 8, .~0.68. The size and
shape (L, X L) of the systems is indicated in the legend. Error bars
are much smaller than the symbol size.
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FIG. 3. Monte Carlo results for the cumulant g; defined in the
text. The data for the different finite-size systems cross asymptoti-
cally at B, .~0.68, in agreement with the data for (¥'), shown in
Fig. 2. The size and shape, L, XL, of the systems is the same in
Fig. 2. Error bars indicate one standard deviation of statistical er-
Tor1s.

viously been used to discuss the generation of long-range
interactions in Ising systems [7,16], and in the spherical limit
of the two-temperature diffusive dynamics [8].

We start with the O(2) version of model B of Halprin and
Hohenberg [17] which describes critical relaxation by Ka-
wasaki dynamics towards the equilibrium of the coarse-
grained XY model:

1
5,=\V? (= V24 1)t 37 2|+ .

Here, ¢(x,t) is the two-dimensional, coarse-grained order
parameter, the parameters A and g are constants, and the
relevant temperature dependence is contained in 7, such that
the critical point corresponds to 7=0. Furthermore, 7(x,t)
is a Gaussian noise source which has zero mean and
(DX, (X" ,t")) =2\ 8,58(t —1')VZS(x—X).

Now consider the generalization of model B to a
d-dimensional two-temperature model with spin exchanges
that occur at one temperature in an m-dimensional ““parallel”
subspace and at another temperature in the remaining d —m
“perpendicular” dimensions. In order to account for the dif-
ferent temperatures of the exchanges in the different sub-
spaces of this model, the Laplacian operators and the noise
term must be split into parallel and perpendicular parts. Fur-
thermore, parameters such as 7 and g will have different
values depending on whether they are associated with the
diffusion in the parallel or the perpendicular directions. For
example, the model B term 7V2¢ will split into two terms:
7, V2 ¢ and fr”52¢, where d (V) indicates a gradient over
the m parallel (d—m perpendicular) directions. As 7 has
now been split into parallel and perpendicular parts, the
theory can describe various types of critical behavior de-
pending on whether (i) 7, =0 and 7>0, (ii) 7j=0 and
7, >0, or (iii) 7, = 7j=0. The type of ordering ordering seen
in Fig.1 corresponds to (i) and in the following we restrict
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FIG. 4. Finite-size scaling of Monte Carlo results for the order
parameter (¥'), using B, .=0.68, v=0.65, and #=0.02. The size
and shape, L | XL, of the systems is the same as in Fig. 2.

our consideration to that case. Keeping only those terms
which are relevant (in the renormalization group sense) near
the upper critical dimension d.=4—m, we arrive at the fol-
lowing equation:
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Note that only the perpendicular part of the noise, 7, , is

relevant near d.. It has vanishing mean and

(M1 a8 7 (X ,1)) =2\ B g 8(t—1') V2 8(x—X).
Interestingly, this Langevin equation is of the form

SH
0, p=\V*—+ 7,
¢

where % satisfies the fluctuation-dissipation theorem and
therefore the above equation describes the critical dynamics
of an equilibrium system. The Hamiltonian % of that equi-
librium system is most easily expressed in Fourier space as

1 (kb +mkf+7k2
S e e OL S
k L
81
41 (k1) k) plks) P(ky)
Yk, kg

X 8(ky+ - +ky),

which is the Hamiltonian of the the XY model with dipolar
interactions. Thus, as in the Ising case [7], we arrive at the
conclusion that the mesoscopic critical properties of the two-
temperature diffusive XY model are in the same universality
class as an equilibrium model with long-range (dipole) inter-
actions. Most importantly for the two-temperature XY
model, however, we see the mechanism that apparently
causes the Mermin-Wagner theorem to fail: the two-
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temperature diffusive dynamics generate effective long-range
interactions in the steady state of the system.

The static critical properties of the equilibrium XY model
with dipole interactions have been studied using renormal-
ization group methods for the m=1 case [18]. The results
show that the static structure function scales as

Sk, Ky, 7)=p 2 IS(k, Juky/ A T ),

which defines the exponents 7, v, and A. To second order in
e=3—d, it has been found that w»=0.500+0.100e
+0.054e2, 7~0.0177¢2, and A=1— 7/2.

Figure 4 shows the scaling plot of (V') using the above
values of the exponents with e =1. The data collapse is not
perfect, but it is consistent with the predictions of the field
theory, considering that the field-theory predictions are only
approximate, being to finite order in €. We caution, however,
that a range of exponents (»=0.6%x0.1 and 7=0.10%0.15)
also produce a collapse of the data. A more accurate deter-
mination of the value of the exponents would require data for
a variety of system shapes and significantly larger system
sizes than were used in the current study.

In summary, our Monte Carlo simulations taken together
with the field-theoretic results suggest a simple picture:

Long-range order does exist in the d=2, two-temperature,
diffusive XY model and it is caused by effective long-range
interactions generated by the anisotropic diffusive dynamics
coupled with the violation of the fluctuation-dissipation theo-
rem. In light of this result, we return to the question posed at
the outset: Can the LP argument or the MW theorem be
extended to nonequilibrium steady states? In general, the an-
swer to this question appears to be no, even for systems with
purely local interactions and dynamics. However, it still re-
mains possible that the LP argument or the MW theorem can
be extended to nonequilibrium steady-state systems which
evolve with some restricted class of dynamical rules. Unfor-
tunately, our knowledge in this field is rather limited; we
know only that long-range order can appear in low-
dimensional nonequilibrium systems whose dynamics is ei-
ther long ranged [6], or involves anisotropic diffusion [3].
Clearly, much more work needs to be done to fully answer
the question posed in this paper.
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